新媒易动态
NEWS CENTER
NEWS CENTER
2020-03-30
本文以Google Analytics为例,分析了BI产品构建的四个要素,希望能对你有所帮助。
在开始本小结的介绍之前,我先简单介绍一下Google Analytics这款产品。
官方对它的介绍是:
Google Analytics是公司Google为网站提供的数据统计服务。可以对目标网站进行访问数据统计和分析,并提供多种参数供网站拥有者使用。
简单来说,Google Analytics提供的最核心的能力就是数据统计,在此基础上扩展了数据预测、智能检测等分析能力。
打开Google Analytics的官网(https://www.google.com/analytics/),你会发现Google Analytics是一套完整的数据解决方案。从产品初期数据采集到数据处理、查询以及产品上线后的广告分析、A/B test,甚至还提供了一套标准的代码管理器。Google Analytics基本覆盖了一个产品前中期的整条数据链路。
这也是我本节要说的,BI提供的应该是完整的数据解决方案,Google Analytics很好的做到了这一点。
当然要做到这一点也并不简单,回首看一下Google Analytics的发展历史:
从2005年GA分析上线,直到2016年,其不断丰富产品线,才形成了Google Analytics Solutions,在2018年,官方将GA Solution升级为Google Marketing Platform,整合了DoubleClick广告技术,帮助企业购买和追踪广告的有效性,实现更强的联动合作。
简单介绍一下Google Marketing Platform主要的几款产品:
如何让数据能够快速、准确的提供给业务用户是BI产品要解决的首要问题,说白了用户使用BI产品最主要的目的就是查询数据。
我们来看一下GA是如何解决这个问题的,首先我们看一下GA整体的数据处理流程:
可以看到GA数据处理流程整体可以分为三个部分:数据采集、配置&数据处理、数据报告。这三个步骤的处理让整个数据处理流程做到了规范化、自动化。这也是目前BI产品处理数据一般的流程,下面我们简单对三个部分进行说明:
GA提供了一些标准的JS组件及SDK,这使得网站、应用的基础数据收集变的简单,只需接入JS库或者SDK即可自动收集网站的用户行为及受众特征。
为了在接下来的流程中能够顺利处理收集到的数据,GA提供了开放的Measurement Protocol,及数据测量协议,它定义了一套标准的数据参数规则,并支持针对收集到的数据进行参数验证,保证了收集到的数据是符合数据规范的。
千万别小看这一步,数据收集的自动化和规范化为后续的数据处理打下了坚实的基础,依赖这一套标准的规范,BI产品实现高度组件化才变得切实可行。
采集到一条条标准化的数据日志,数据处理便变得简单了。
通过几层数据处理,根据数据的属性及分类,GA生产了一些可供用具使用的数据应用视图如:实时数据视图、基础数据视图、用户受众视图等,依赖GA工具本身强大的细分分析能力,用户可以对数据视图进行组合、过滤等操作,完成数据报告的生产。
基于生成的数据视图,GA提供了一套标准的数据报告API,通过对接这些API,可以将数据视图与GA连接,并生成一套自动化的标准数据报告,简单介绍一下这几个API:
了解了GA数据处理的三个流程,我们可以看到GA通过一些Open API可以让业务快速接入数据并生成标准数据视图,基于这些标准数据视图,GA数据配置的组件化就顺利成章了。
配置方面,GA也提供了两个标准的API,Management API以及Provisioning API: